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Granger causality analysis is a popular method for inference on directed interactions in complex systems of
many variables. A shortcoming of the standard framework for Granger causality is that it only allows for
examination of interactions between single �univariate� variables within a system, perhaps conditioned on other
variables. However, interactions do not necessarily take place between single variables but may occur among
groups or “ensembles” of variables. In this study we establish a principled framework for Granger causality in
the context of causal interactions among two or more multivariate sets of variables. Building on Geweke’s
seminal 1982 work, we offer additional justifications for one particular form of multivariate Granger causality
based on the generalized variances of residual errors. Taken together, our results support a comprehensive and
theoretically consistent extension of Granger causality to the multivariate case. Treated individually, they
highlight several specific advantages of the generalized variance measure, which we illustrate using applica-
tions in neuroscience as an example. We further show how the measure can be used to define “partial” Granger
causality in the multivariate context and we also motivate reformulations of “causal density” and “Granger
autonomy.” Our results are directly applicable to experimental data and promise to reveal new types of
functional relations in complex systems, neural and otherwise.
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I. INTRODUCTION

A key challenge across many domains of science and en-
gineering is to understand the behavior of complex systems
in terms of dynamical interactions among their component
parts. A common way to address this challenge is by analysis
of time series data acquired simultaneously from multiple
system components. Increasingly, such analysis aims to draw
inferences about causal interactions among system variables
�1–3� as a complement to standard assessments of undirected
functional connectivity as revealed by coherence, correla-
tion, and the like.

A first step in any dynamical analysis is to identify target
variables. Typically, subsequent analysis then assumes that
functional �causal� interactions take place among these vari-
ables. However, in the general case it may be that explana-
torily relevant causal interactions take place among groups
or “ensembles” of variables �4,5�. It is important to account
for this possibility for at least two reasons. First, identifica-
tion of target variables is usually based on a priori system
knowledge or technical constraints, which may be incom-
plete or arbitrary, respectively. Second, even given appropri-
ate target variables, it is possible that relevant interactions
may operate at multiple scales within a system, with larger
scales involving groups of variables. Consider an example

from functional neuroimaging. In a typical functional mag-
netic resonance imaging �fMRI� study, the researcher may
identify a priori several “regions of interest” �ROIs� in the
brain, each represented in the fMRI data set by multiple vox-
els, where each voxel is a variable comprising a single time
series reflecting changes in the underlying metabolic signal.
Assuming that the objective of the study is to assess the
causal connectivity among the ROIs, a standard approach is
to derive a single time series for each ROI either by averag-
ing or by extracting a principal component �6�; alternatively,
repeated pairwise analysis can be performed on each pair of
voxels. A more appropriate approach, however, may be to
consider causal interactions among the multivariate groups
of voxels comprising each ROI. Similar scenarios could be
concocted in a very wide range of application areas, includ-
ing economics, biology, and climate science among others.

In this paper, we describe a principled approach to assess-
ing causal interactions among multivariate groups of vari-
ables. Our approach is based on the concept of Granger cau-
sality �G-causality� �7,8�, a statistical notion of causality
which originated in econometrics but which has since found
widespread application in many fields with a particular con-
centration in the neurosciences �1,9,10�. G-causality is an
example of time series inference on stochastic processes and
is usually implemented via autoregressive �AR� modeling of
multivariate time series. The basic idea is simple: one vari-
able �or time series� can be called causal to another if the
ability to predict the second variable is improved by incor-
porating information about the first. More precisely, given
interdependent variables X and Y, it is said that “Y Granger
causes X” if, in a statistically suitable manner, Y assists in
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predicting the future of X beyond the degree to which X
already predicts its own future. It is straightforward to extend
G-causality to the conditional case �5�, where Y is said to G
cause X, conditional on Z, if Y assists in predicting the future
of X beyond the degree to which X and Z together already
predict the future of X. Importantly, conditional G-causality
is orthogonal to the notion of inferring causality among
groups of variables, which is the focus of the present paper
and which we term multivariate G-causality �MVGC�. In the
multivariate case, the above description of G-causality is
generalized to interactions among sets of interdependent
variables X, Y, and �in the conditional multivariate case� Z.
The generalization we propose was originally introduced in
the field of econometrics by Geweke in 1982 �5� but has
since been almost totally overlooked. Indeed a different mea-
sure has recently appeared �4�. In the following, we derive
several justifications for preferring Geweke’s measure, some
of which we examine numerically. We go on to explore a
series of implications for the analysis of complex systems in
general, with a particular focus on applications in neuro-
science.

After laying out our conventions in Sec. II, in Sec. III we
introduce two alternative measures of multivariate
G-causality. The formulations differ according to their treat-
ment of the covariance matrices of residuals in the underly-
ing autoregressive models: Geweke’s measure uses the deter-
minant of this matrix �the generalized variance�, while the
other uses the trace �the total variance�. Section IV explores
several advantageous properties of the determinant formula-
tion as compared to the trace formulation. In brief, the deter-
minant formulation is fully equivalent to transfer entropy �3�
under Gaussian assumptions, is invariant under a wider range
of variable transformations, is expandable as a sum of stan-
dard univariate G-causalities, and admits a satisfactory spec-
tral decomposition. Numerically, we show that Geweke’s
measure is just as stable as is the alternative measure based
on the total variance. Section V extends the determinant for-
mulation to the important case of “partial” G-causality which
provides some measure of control with respect to unmea-
sured latent or exogenous variables. Section VI extends a
previously defined measure of “causal density” �11,12�
which reflects the overall dynamical complexity of causal
interactions sustained by a system. In Sec. VII we show how
multivariate G-causality can enhance a measure of “au-
tonomy” �or “self-causation”� based on G-causality �13� and
Sec. VIII carries the discussion toward the identification of
macroscopic variables via the notion of causal independence.
Section IX provides a general discussion and summary of
contributions.

II. NOTATIONAL CONVENTIONS AND PRELIMINARIES

We use bold type to denote vector quantities and upper-
case letters to denote either matrices or random variables
according to context. All vectors are considered to be column
vectors. “�” denotes vertical concatenation of vectors, so
that for x= �x1 , . . . ,xn�T and y= �y1 , . . . ,ym�T, x � y is the vec-
tor �x1 , . . . ,xn ,y1 , . . . ,ym�T of dimension n+m, where the su-
perscript symbol “T” denotes the transpose operator. We also

write � · � for the determinant and tr� · � for the trace of a square
matrix.

Given jointly distributed multivariate random variables
�i.e., random vectors� X , Y, we denote by ��X� the n�n
matrix of covariances cov�Xi ,Xj� and by ��X ,Y� the n�m
matrix of cross covariances cov�Xi ,Y��. We then use ��X �Y�
to denote the n�n matrix,

��X�Y� � ��X� − ��X,Y���Y�−1��X,Y�T, �1�

defined when ��Y� is invertible. ��X �Y� appears as the co-
variance matrix of the residuals of a linear regression of X on
Y �cf. Eq. �6� below�; thus, by analogy with partial correla-
tion �14� we term ��X �Y� the partial covariance �15� of X
given Y. Similarly, given another jointly distributed variable
Z, we define the partial cross covariance

��X,Y�Z� � ��X,Y� − ��X,Z���Z�−1��Y,Z�T. �2�

The following identity �16� will be useful for deriving
certain properties of multivariate G-causality,

���X�Y�� = ���X � Y��/���Y�� . �3�

Suppose we have a multivariate stochastic process Xt in
discrete time �17� �i.e., the random variables Xit are jointly
distributed�. We use the notation Xt

�p��Xt � Xt−1 � ¯

� Xt−p+1 to denote X itself, along with p−1 lags, so that for
each t, Xt

�p� is a random vector of dimension pn. Given the
lag p, we also often use the shorthand notation Xt

−�Xt−1
�p� for

the lagged variable.

III. MULTIVARIATE GRANGER CAUSALITY

G-causality analysis is concerned with the comparison of
different linear regression models of data. Thus, let us con-
sider the �multivariate� linear regression of one random vec-
tor X, the predictee, on another random vector Y, the predic-
tor �18�,

X = A · Y + � , �4�

where the n�m matrix A contains the regression coefficients
and the random vector �= ��1 , . . . ,�n�T comprises the residu-
als. The coefficients of this model are uniquely specified by
imposing zero correlation between the residuals � and the
regressors �predictors� Y. Via the Yule-Walker procedure
�1,16� one obtains

A = ��X,Y���Y�−1 �5�

and finds the covariance matrix of the residuals to be given
by

���� = ��X�Y� , �6�

with ��X �Y� defined as in Eq. �1�.
Suppose now we have three jointly distributed stationary

�19� multivariate stochastic processes Xt , Yt , Zt. Then to
measure the G-causality from Y to X given Z, one wants to
compare the following two multivariate autoregressive
�MVAR� models for the processes �8�:

Xt = A · �Xt−1
�p�

� Zt−1
�r� � + �t,
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Xt = A� · �Xt−1
�p�

� Yt−1
�q�

� Zt−1
�r� � + �t�. �7�

Thus the predictee variable X is regressed first on the previ-
ous p lags of itself plus r lags of the conditioning variable Z
and second, in addition, on q lags of the predictor variable Y
�in theory, if not in practice, p, q, and r could be infinite�
�20�.

The standard measure of G-causality used in the literature
is defined only for univariate predictor and predictee vari-
ables Y and X and is given by the logarithmic of the ratio of
the residual variances for regressions �7�. In our notation
�21�,

FY→X�Z � ln� var��t�
var��t��

� = ln� ���t�
���t��

�
= ln� ��X�X−

� Z−�
��X�X−

� Y−
� Z−�� , �8�

where the last equality follows from general formula �6�. By
stationarity this expression does not depend on time t. Note
that the residual variance of the first regression will always
be larger than or equal to that of the second, so that
FY→X�Z�0 always. With regard to statistical inference, it is
known that the corresponding maximum likelihood estimator

�22� F̂Y→X�Z will have �asymptotically for large samples� a
�2 distribution under the null hypothesis FY→X�Z=0 �23,24�
and a noncentral �2 distribution under the alternative hypoth-
esis FY→X�Z�0 �5,25�.

We now consider the case where predictee and predictor
variables are no longer constrained to be univariate, i.e., mul-
tivariate G-causality. For a multivariate predictor, Eq. �8�
above �with Y replaced by the bold type Y� is a valid and
consistent formula for G-causality. However, for the case of
a multivariate predictee there is not yet a standard definition
for G-causality. One possibility is to simply use the multi-
variate mean square error �i.e., total variance or expected
squared length of the multivariate residual�, leading to

FY→X�Z
tr � ln	 tr����t��

tr����t���

 = ln	 tr���X�X−

� Z−��
tr���X�X−

� Y−
� Z−��
 .

�9�

We call this the trace version of multivariate G-causality
�trvMVGC�. As recently noted by Ladroue and colleagues
�4� trvMVGC appears to be a natural extension of
G-causality to the multivariate case because total variance is
a common choice for a measure of goodness of fit or predic-
tion error for a multivariate regression. Moreover, the mea-
sure is always non-negative and reduces to Eq. �8� when the
predictee variable is univariate, and the regression matrix
coefficients that render the residuals uncorrelated with the
regressors also minimize the total variance �this is just the
“ordinary least-squares” procedure, minimizing mean square
error�. Nonetheless, an alternative, originally proposed by
Geweke �5�, uses instead the generalized variance ����t��,
which quantifies the volume in which the residuals lie. This
leads to the measure

FY→X�Z � ln� ����t��
����t���

� = ln� ���X�X−
� Z−��

���X�X−
� Y−

� Z−��� .

�10�

Like trvMVGC, this measure is always non-negative, re-
duces to Eq. �8� when the predictee variable is univariate,
and is consistent with the autoregressive approach inasmuch
as the Yule-Walker regression matrix coefficients minimize
the generalized variance, ������, as well as the total variance
�see Appendix A for a proof�. Geweke �5� listed a number of
motivations for taking FY→X�Z as given in Eq. �10� as the
natural extension of G-causality to the multivariate case.
These include �i� generalized variance version �10� is invari-
ant under �linear� transformation of variables �see Sec. IV B�
and �ii� the maximum likelihood estimator of this quantity,

F̂Y→X�Z, is asymptotically �2 distributed for large samples. In
Sec. IV we further justify this choice. Since we advocate the
use of Geweke’s measure �10� of multivariate G-causality we
abbreviate this simply as MVGC henceforth.

As remarked previously, expression �10� defines condi-
tional MVGC. Geweke �26� gave the following intuitively
appealing expression for FY→X�Z in terms of unconditional
MVGCs:

FY→X�Z � FY�Z→X − FZ→X, �11�

that is, the extent to which Y and Z together cause X less the
extent that Z on its own causes X. Note that this identity also
holds for trvMVGC.

IV. PROPERTIES OF MULTIVARIATE GRANGER
CAUSALITY

In the following sections we discuss some properties of
MVGC and further motivate Geweke’s definition of this
measure.

A. Gaussian equivalence with transfer entropy

When all variables are Gaussian distributed, the MVGC
FY→X�Z is fully equivalent to the transfer entropy TY→X�Z, an
information-theoretic notion of causality �16�, with a simple
factor of 2 relating the two quantities,

FY→X�Z = 2TY→X�Z. �12�

Transfer entropy �3,27� is defined by the difference in entro-
pies,

TY→X�Z � H�X�X−
� Z−� − H�X�X−

� Y−
� Z−� , �13�

and quantifies the degree to which knowledge of the past of
Y reduces uncertainty in the future of X. The equivalence
�Eq. �12�� stems from the entropy of a Gaussian distribution
being directly proportional to the logarithm of the determi-
nant of its covariance matrix and, furthermore, from any con-
ditional entropy involving Gaussian variables being directly
proportional to the logarithm of the determinant of the ap-
propriate corresponding partial covariance matrix �see �16�
for details�. Due to the use of the determinant being crucial
for this relationship, for trvMVGC the equivalence holds
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only in the more restricted situation when the predictee vari-
able is univariate.

In addition to motivating MVGC over trvMVGC, the
equivalence �Eq. �12�� also provides a justification for the
use of linear regression models in measuring causality.
Transfer entropy is naturally sensitive to nonlinearities in the
data, a property which is rightly seen as desirable for mea-
sures of causality and which has motivated the development
of several nonlinear extensions to standard G-causality
�28,29�. However, when data are Gaussian, the two linear
regressions capture all of the entropy difference that defines
transfer entropy, which implies that nonlinear extensions to
G-causality are of no additional utility. Indeed for two mul-
tivariate Gaussian variables X and Y, the partial covariance
��X �Y�, which is the same quantity as the residual covari-
ance under linear regression, can be simply thought of as the
conditional covariance of X given Y because cov�X �Y=y�
=��X �Y� for all y. Hence, for Gaussian data, linear regres-
sion accounts for all the dependence of the regressee on the
regressor.

To demonstrate formally that a stationary Gaussian AR
process must be linear, consider a general stationary multi-
variate Gaussian process Xt satisfying

Xt = f�Xt−1
�p� � + �t, �14�

where f� · � is some sufficiently well-behaved possibly non-
linear function and the �t is independent of Xt−s for s
=1,2 , . . .. For any t then, �t=Xt− f�Xt−1

�p� � is independent of
Xt−1

�p� , so that, in particular, for any value � taken by Xt−1
�p� , the

conditional expectation

E��t�Xt−1
�p� = �� = E�Xt�Xt−1

�p� = �� − f��� �15�

does not depend on � and nor, by stationarity, on t. But since
by assumption Xt and Xt−1

�p� are jointly multivariate Gaussian
by a well-known result E�Xt �Xt−1

�p� � depends linearly on � and
from Eq. �15� it follows that f��� must be a linear function of
�.

B. Invariance under transformation of variables

The partial covariance ��X �Y� transforms in a simple way
under linear transformation of variables. If T and U are re-
spective matrices for linear transformations on X and Y then
we have that

��T · X�U · Y� � T��X�Y�TT. �16�

Using this formula and the properties of the determinant and
trace operators, we can find the respective groups of linear
transformations under which MVGC and trvMVGC are in-
variant. For MVGC, we find that the most general transfor-
mation that FY→X�Z is invariant is given by

X → Txx · X ,

Y → Tyx · X + Tyy · Y + Tyz · Z ,

Z → Tzx · X + Tzz · Z , �17�

where the matrices Txx, Tyy, and Tzz on the diagonal are non-
singular. All these symmetries are desirable properties for a

causality measure. There ought to be invariance under redefi-
nition of the individual variables within each of X, Y, and Z,
�i.e., under the diagonal components Txx, Tyy, and Tzz of Eq.
�18�� because MVGC is designed to measure causality be-
tween unified wholes rather than between arbitrarily defined
constituent elements. The “off-diagonal” components Tyx,
Tyz, and Tzx are also intuitive. Adding components of Z or X
to the predictor Y should not change the value of MVGC
because MVGC is designed to measure the ability of Y at
predicting X over and above Z and X. Similarly, adding com-
ponents of X onto Z should not make a difference because
the predictee X could already be thought of as a conditional
variable before transformation.

trvMVGC has an invariance under a similar group of
transformations but with one significant restriction, namely,
that the matrix Txx must be conformal �angle preserving�,
that is Txx must satisfy TxxTxx

T=cI for some constant c. This
difference can have practical consequences. The broader in-
variance of MVGC �under all linear transformations Txx�
means that this measure, but not trvMVGC, is insensitive to
certain common inaccuracies of data collection, namely,
those in which variables within a given set X are contami-
nated by contributions from other variables �see Sec. IX�. To
put this point another way, if one wishes to infer MVGC
between hidden variables by analyzing MVGC between ob-
served variables, these two quantities are actually the same if
the relationship between hidden and observed variables is
linear and can be written in the form given in Eq. �18�. One
may also wish to measure the MVGC from the independent
components of the predictor to the independent components
of the predictee. Again, the invariance properties of MVGC
mean that one does not need to explicitly find these indepen-
dent components; one can simply compute MVGC between
observed components. These observations indicate that
MVGC takes into account correlation between variables in a
principled way. We see this explicitly in Sec. IV C.

The restriction TxxTxx
T=cI for trvMVGC further implies

that an uneven rescaling of the components of the predictee
variable may change the value of FY→X�Z

tr . This too has prac-
tical implications, namely, that trvMVGC but not MVGC can
be affected by magnitude differences in the components of
X, perhaps resulting from these components reflecting under-
lying mechanisms that are differently amplified or differen-
tially accessible to the measuring equipment, a common situ-
ation in many neuroscience contexts �see Sec. IX�. This
sensitivity is undesirable because causal connectivity should
be based on the information content of signals �cf. Sec.
IV A� and not on their respective magnitudes.

It is worth noting that for transfer entropy the symmetry
group can be extended to include all nonsingular �not neces-
sarily linear� transformations of the predictee variable since
the entropies are invariant under such transformations �30�.
Since G-causality is essentially a linear version of transfer
entropy, the former should at least be invariant under the
linear subgroup of transformations.

C. Expansion of multivariate Granger causality

MVGC is expandable as a sum of G-causalities over all
combinations of univariate predictor and predictee variables
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contained within the multivariate composites. The existence
of this expansion depends on the facts that determinants are
decomposable into products and that logarithms of products
are decomposable into sums of logarithms. No such decom-
position exists for the logarithm of a trace and so there is no
obvious way of expanding trvMVGC into combinations of
univariate components.

The expansion of MVGC is not entirely straightforward
because different terms in the sum involve conditioning on
the past and present of different subsets of variables. How-
ever each predictor or predictee combination appears pre-
cisely once in the sum, and each term can be explained in-
tuitively. The general formula may be written as

FY→X�Z = �
i=1

n

�
�=1

m

FY�→Xi�Z�X�Y1�¯�Y�−1�X1
0

�¯�Xi−1
0 ,

�18�

where the superscript “0” indicates conditioning on the
present �in addition to the past� of the corresponding vari-
ables. Thus, in the term for causality from Y� to Xi one
conditions on �i� the past of the entire multivariate condi-
tional variable Z, �ii� the past of the entire multivariate pre-
dictee variable X, �iii� the past of all predictor variables Y	

with 	
�, and �iv� the present of all predictee variables Xj
with j
 i. The derivation of expansion �18� is given in Ap-
pendix B.

For the case of a multivariate predictor and a univariate
predictee we have

FY→X = FY1→X + FY2→X�Y1
+ FY3→X�Y1�Y2

+ ¯

+ FYm→X�Y1�Y2�¯�Ym−1
. �19�

This formula is consistent with the intuitive idea that the
total degree to which the multivariate Y helps predict the
univariate X is the degree to which Y1 predicts X, plus the
degree to which Y2 helps predict X over and above the infor-
mation already present in Y1, and so on.

For the case of a multivariate predictee and a univariate
predictor we have

FY→X = FY→X1�X + FY→X2�X�X1
0 + FY→X3�X�X1

0
�X2

0 + ¯

+ FY→Xn�X�X1
0

�X2
0

�¯�Xn−1
0 . �20�

This formula supports the intuition that the total degree to
which the univariate Y helps predict the multivariate X is the
degree to which the past of Y helps predict the current value
of X1 over and above the degree to which the past of the
whole of X predicts the current value of X1, plus the degree
to which the past of Y helps predict the current value of X2
over and above the degree to which the past of the whole of
X and the current value of X1 predict the current value of X2,
and so on.

We remark on two implications of the expansion of
MVGC. First, Ladroue and colleagues suggested that use of
generalized residual variance for causal inference on high-
dimensional data might suffer from problems of numerical
stability. However, the expansion of MVGC into low-
dimensional univariate G-causalities suggests that there

should be no problem �see Sec. IV C for numerical evidence
of this�. Second, expansion �18� indicates that MVGC con-
trols for, to some extent, the influence of unmeasured latent
and/or exogenous variables �see also Sec. V�. By condition-
ing on the present of certain appropriate predictee variables
for each term of the expansion, only the effects of each pre-
dictor on independent components of the predictees enter the
equation. This property stems from the fact that the determi-
nant of the residual covariance matrix reflects not just re-
sidual variances but also the extent to which these residual
variances are independent of each other. This is another ad-
vantage of the MVGC measure over trvMVGC, which does
not depend on residual correlations.

Stability of multivariate Granger causality

We tested numerically our claim that MVGC should not
be less stable than trvMVGC. We studied MVAR�1� pro-
cesses whose dynamics are given by

Xt = A · Xt−1 + �t, �21�

where X contains eight variables, the sum of each row of A
�i.e., total afferent to each element� is 0.5, all components in
a given row of A are equal and positive, and each component
of �t is an independent Gaussian random variable of mean 0
and variance 1. We generated 30 random “connectivity” ma-
trices �or systems� Ai �i=1, . . . ,30�, each with an average of
two nonzero components per row. For each Ai we obtained
ten sets of 3000 �postequilibrium� data points via Eq. �21�.
For each set, we computed the MVGC across each biparti-
tion of the system corresponding to Ai. We then calculated,
for each bipartition, the standard deviation of the MVGC
across the ten data sets and �excluding bipartitions with stan-
dard deviation less than 0.01� the corresponding coefficient
of variation �CoV� �standard deviation divided by mean�.
This procedure allowed us to obtain, for each Ai, a maximum
CoV. Figure 1�a� shows that the maximum CoV is generally
very small and never large, confirming the stability of
MVGC.

To compare the stability of MVGC with that of trvM-
VGC, for each Ai and for each bipartition we divided the
CoV for MVGC by the CoV for trvMVGC. Figure 1�b�
shows the distribution of the average of this ratio across all
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FIG. 1. Stability of MVGC. �a� Histogram of the maximum
CoV of MVGC, observed over ten trials of 3000 time steps, for
each of 30 different systems, as described in Sec. IV C. �b� Histo-
gram of the average ratio between the CoV of MVGC and the CoV
of trvMVGC for each of the 30 systems. MVGC �a� is numerically
stable and �b� is not appreciably different from trvMVGC in terms
of stability properties.
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bipartitions. The clustering of this distribution at �1, with no
outliers, confirms that MVGC and trvMVGC have similar
stability properties at least in the systems we have simulated.

To generalize these results we next used a genetic algo-
rithm �GA� �12,31� to see if we could find a network for
which MVGC becomes unstable. The GA was initialized us-
ing a population composed of 30 random systems Ai de-
scribed above. We ran the GA for 130 generations. In each
generation, we computed the fitness of each system as the
maximum CoV of MVGC. Systems were selected to proceed
to subsequent generations using stochastic rank-based selec-
tion. Mutations enabled the adding of new nonzero compo-
nents to Ai, the removal of existing nonzero components, or
the swapping of components, followed by renormalization of
each row to sum to 0.5 again; two mutations were applied
per system. After 130 generations �sufficient for fitness to
asymptote� the average fitness �i.e., maximum CoV� in the
population was �0.25 and the maximum was 0.39, which is
still a low value. For the Ai that gave this highest value, we
compared the CoV obtained using MVGC with that obtained
using trvMVGC following the procedure described above.
The average ratio �across all bipartitions� was �1.00 �maxi-
mum value 1.12�, indicating that MVGC and trvMVGC had
similar stability properties even for systems optimized to be
unstable with respect to MVGC. Further, we examined some
Ai for which the sums of the rows differed �i.e., having het-
erogeneous afferent connectivity�; these systems had similar
stability properties to those described above. Finally, stability
properties were unaffected when computations were based
on 1000 �rather than 3000� data points. Taken together, these
simulation results confirm that MVGC is numerically stable
and is not appreciably different from trvMVGC in terms of
stability properties.

D. Spectral decomposition

In this section we review the spectral decomposition of
G-causality �1,5�. For simplicity we limit ourselves to the
unconditional case, although the procedure may be readily
extended to the conditional case �as described in, e.g., Refs.
�1,26,32��. We assume multivariate predictor and predictee
variables and show that MVGC but not trvMVGC has a
satisfactory spectral decomposition.

Consider the stationary MVAR,

Xt = A · Xt−1
�p� + �t = �

k=1

p

Ak · Xt−k + �t. �22�

We may write this as

A�L� · Xt = �t, �23�

where L denotes the �single time step� lag operator and

A�L� � I − �
k=1

p

AkL
k. �24�

Equation �23� may be solved as

Xt = H�L� · �t, �25�

where H�L��A�L�−1. Transforming into the frequency do-
main via the discrete-time Fourier transform X���
=�t=−�

� Xte
−i�t yields A��� ·X���=���� �replace L by e−i��, so

that

X��� = H��� · ���� , �26�

where H����A���−1 is the transfer matrix. The �power�
spectral density of X is then given by

S��� = H�������H���� . �27�

From a standard result �33�, since H�L� is a square matrix lag
operator with the identity matrix as leading term, we have

1

2


−



ln�H���H�����d� = 0 �28�

provided that all roots of the characteristic polynomial �A�L��
lie outside the unit circle, which is a necessary condition for
the existence of stationary process �22�. From Eq. �27� we
may then derive the relation �34�

1

2


−



ln�S����d� = ln������ . �29�

Consider now the stationary MVAR,

Xt � Yt = A · �Xt−1
�p�

� Yt−1
�q� � + �x,t � �y,t, �30�

with coefficient matrix

A � �Axx Axy

Ayx Ayy
� �31�

and residual covariance matrix

���x � �y� � ��xx �xy

�yx �yy
� . �32�

Let us split the corresponding transfer matrix H��� as

H��� � A���−1 = �Hxx��� Hxy���
Hyx��� Hyy���

� �33�

and the spectral density as

S��� = �Sxx��� Sxy���
Syx��� Syy���

� . �34�

Then Sxx��� is just the spectral density of X, which from Eq.
�27� is given by

Sxx��� = Hxx����xxHxx
� ��� + 2 Re�Hxx����xyHxy

� ����

+ Hxy����yyHxy
� ��� . �35�

The idea is that we wish to decompose this expression into a
part reflecting the effect of X itself and a part reflecting the
causal influence of Y. The problem is that, due to the pres-
ence of the “cross” term, Sxx��� does not split cleanly into an
X and a Y part. Geweke �5� addressed this issue by introduc-
ing the transformation
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X � Y → U · �X � Y� , �36�

where

U � � I 0

− �yx�xx
−1 I

� . �37�

Note that this transformation leaves the G-causality FY→X
invariant �cf. Sec. IV B� and, for the transformed regression,
we have �xy �0; that is, the residuals �x , �y are uncorre-
lated. Thus, assuming transformation �37� has been preap-
plied, Eq. �35� becomes

Sxx��� = Hxx����xxHxx
� ��� + Hxy����yyHxy

� ��� , �38�

whereby the spectral density of X splits into an “intrinsic”
part and a causal part. The spectral G-causality of Y→X at
frequency � is now defined to be

fY→X��� � ln� �Sxx����
�Hxx����xxHxx

� ����
� �39�

or, in terms of the untransformed variables,

fY→X��� � ln� �Sxx����
�Sxx��� − Hxy����y�xHxy

� ����� , �40�

with Sxx��� as in Eq. �35� and �y�x��yy −�yx�xx
−1�xy.

Geweke �Theorem 2 in Ref. �5�� then established the fun-
damental motivating relationship between frequency and
time-domain G-causality,

1

2


−



fY→X���d� = FY→X, �41�

provided that all roots of �Ayy�L�� lie outside the unit circle
�35�. The proof of this relation relies crucially on result �28�
which, we note, involves the determinant of the transfer ma-
trix. Thus if the trace, rather than the determinant, was to be
used in definition �39� for fY→X��� then we could not expect
to obtain a relation corresponding to Eq. �41� since �i� the
trace of the spectral density in Eq. �27� does not factorize,
�ii� there is no trace analog to Eq. �28�, and thus �iii� no
analog to Eq. �29�. This would seem to preclude a satisfac-
tory spectral decomposition for the trace version of
G-causality. Similar remarks apply to conditional G-causality
in the spectral domain.

In Ref. �4�, however, it is conjectured that a trace analog
of Eq. �41� does indeed hold. To test this conjecture we per-
formed the following experiment: we simulated 1000
MVAR�1� processes of the form

Xt � Yt = A · �Xt−1 � Yt−1� + �x,t � �y,t, �42�

where X has dimension 2 and Y has dimension 1. Residuals
�x,t , �y,t were completely uncorrelated with unit variance
�i.e., ���x,t � �y,t� was the 3�3 identity matrix� so that,
in particular, the Geweke transformation �37� was unneces-
sary. For each trial the 3�3 coefficient matrix A was chosen
at random with elements uniform on �− 1

2 , 1
2 � and pro-

cess �42� simulated for 106 stationary time steps �the
occasional unstable process was rejected�. Time domain
causalities FY→X , FY→X

tr and frequency-domain causalities

fY→X��� , fY→X
tr ��� were calculated in sample using p=10

lags. �As noted previously, �35� the equality in Eq. �41� is
only assured in the limit of infinite lags; ten lags were found
empirically to achieve good accuracy without overfitting the
data.� Relative errors of integrated spectral MVGC with re-
spect to time-domain MVGC, expressed as a percentage,
were defined as

E% � 100 �

1

2


−



fY→X���d� − FY→X

FY→X
,

E%
tr � 100 �

1

2


−



fY→X
tr ���d� − FY→X

tr

FY→X
tr �43�

for MVGC and trvMVGC, respectively. �The integrals were
computed by standard numerical quadrature.� Results, dis-
played in Table I, confirm to good accuracy the theoretical
prediction of Eq. �41� for MVGC �the small negative bias on
E% is due to the finite number of lags�, while for trvMVGC
relative errors are several orders of magnitude larger and
furthermore are not decreased by choosing longer stationary
sequences and/or more lags. The full distribution of relative
errors is also displayed as a histogram in Fig. 2.

We also repeated the experiment with higher order
MVAR�p� processes, higher dimensional predictee and pre-
dictor variables and correlated residuals �x. In all cases, re-
sults confirmed the accuracy of Eq. �41� for MVGC and
yielded large relative errors for trvMVGC. We remark that
qualitative differences �i.e., aside from differences of scale�
between spectral MVGC and trvMVGC could be substantial
�Fig. 3�. These differences, furthermore, appeared in general

TABLE I. Comparison of relative errors of integrated spectral
MVGC and trvMVGC with respect to time-domain MVGC and
trvMVGC for a random sample of MVAR�1� processes. Top row
shows MVGC; bottom row shows trvMVGC. See text for details.
Figures in the “absolute mean” column are the means of the abso-
lute values �E%� and �E%

tr �.

Error Mean Standard deviation Absolute mean

E% −0.0004 0.0005 0.0005

E%
tr −0.0488 10.5995 8.1799
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FIG. 2. Distribution of relative errors of integrated spectral mul-
tivariate G-causality with respect to the time domain for �a� MVGC
and �b� trvMVGC for a random sample of MVAR�1� processes.
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to be exaggerated by the presence of residual correlations;
this is consonant with the sensitivity of MVGC as contrasted
with the lack of sensitivity of trvMVGC to residual correla-
tions �see Secs. IV C and V�.

It is straightforward to show that fY→X��� is invariant un-
der the same group of linear transformation �18� as FY→X;
again, fY→X

tr ��� will in general be invariant only under the
restricted group with Txx conformal. This extends to the con-
ditional case.

V. MULTIVARIATE PARTIAL GRANGER CAUSALITY

Recently, a partial G-causality measure has been intro-
duced �36� which exploits a parallel with the concept of par-
tial coherence �37� in order to control for latent and exog-
enous influences on standard G-causality. Partial G-causality
modifies the standard G-causality measure by including
terms based on residual correlations between the predictee
variable and the conditional variables. Consider, in addition
to regressions �7�, the following regressions of the condition-
ing variable Zt:

Zt = B · �Xt−1
�p�

� Zt−1
�r� � + �t,

Zt = B� · �Xt−1
�p�

� Yt−1
�q�

� Zt−1
�r� � + �t�. �44�

Here the roles of the predictee and conditioning variables are
reversed. Then for univariate predictor and predictee the par-
tial G-causality of Y on X given Z is defined by conditioning
the respective residual covariances for the regressions of X
on the corresponding residuals for the regressions of Z,

FY→X�Z
P � ln� ���t��t�

���t���t��
� . �45�

This extends naturally to the fully multivariate case �cf. Eq.
�10��, and we define partial MVGC �pMVGC� as

FY→X�Z
P � ln� ����t��t��

����t���t���
� �46�

=ln� ���X�X−
� Z−

� Z��
���X�X−

� Y−
� Z−

� Z��� , �47�

where right-hand side �RHS� �47� follows from identity �C2�
derived in Appendix C �with W�X− � Z− and W�X− � Y−

� Z− for the numerator and denominator terms, respectively�.
Comparing with Eq. �10� we see thus that pMVGC differs
from MVGC in the inclusion of the present conditioning
variable Z in the respective regressions. Seen in this form, it
is clear that, as is the case for MVGC, pMVGC is always
non-negative �38�. One could alternatively express pMVGC
as �nonpartial� MVGC conditioned on a “forward lagged”

version of Z: defining Z̃t�Zt+1 we have Zt � Zt−1
�r� � Z̃t−1

�r+1� or

Z̃−=Z � Z− �note the additional lag on Z̃−�, so that, from Eq.
�47�,

FY→X�Z
P = FY→X�Z̃. �48�

As noted in Sec. IV C, �nonpartial� MVGC to some extent
already controls for the influence of latent and/or exogenous
variables because the generalized variance is sensitive to re-
sidual correlations. However, pMVGC takes into account
even more correlations with the explicit aim of controlling
for latent and/or exogenous influences. pMVGC may there-
fore be preferable when such influences are expected to be
�a� strong and �b� relatively uniform in their influence on the
measured system. Indeed, pMVGC �and the original measure
of partial G-causality� can only be effective in compensating
for latent and/or exogenous variables that affect all modeled
variables �i.e., predictee, predictor, and conditioning� to a
roughly equal degree �36�.

It is interesting to note that pMVGC may be expressed in
terms of nonpartial MVGCs as

FY→X�Z
P = FY→Z�X − FY→Z�X �49�

by straightforward application of Eq. �3�. As expected, Eq.
�49� includes a term with a mandatory multivariate predictee
since it is only in this case that residual correlation can make
a difference. It is interesting that Z appears as a predictee
variable; this might be understood as pMVGC using the con-
ditioning variable Z as a “proxy” by which to assess the
influence of latent or exogenous variables.

A trace version of pMVGC may be defined analogously to
Eq. �46�. Again by Eq. �C2� of Appendix C, the identity
corresponding to Eq. �47� will hold, as will the trace analog
of Eq. �48�. However, the analog of Eq. �49� will not hold in
general since the traces of the partial covariance matrices
will in general not factorize appropriately �39�.

From Eq. �48� it is straightforward to derive a spectral
decomposition fY→X�Z

P ��� for pMVGC, which will integrate
correctly to the time-domain pMVGC FY→X�Z

P . Again, a spec-
tral decomposition for the corresponding trace version is
likely to be problematic insofar as it will fail in general to
integrate correctly to the time-domain value �cf. Sec. IV D�.

VI. CAUSAL DENSITY

A straightforward application of MVGC is to measures of
causal density, i.e., the overall level of causal interactivity
sustained by a multivariate system X. A previous measure of
causal density �12� has been defined as the average of all
pairwise �and hence univariate� G-causalities between sys-
tem elements conditioned on the remaining system elements
�40�,
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FIG. 3. Comparison of MVGC and trvMVGC in the frequency
domain: spectral MVGC and trvMVGC plotted against frequency
for �a� a typical MVAR�3� process with dim�X�=2, dim�Y�=1 and
�b� a typical MVAR�5� process with dim�X�=3, dim�Y�=2.
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cd�X� �
1

n�n − 1��i�j

FXi→Xj�X�ij�
, �50�

where X�ij� denotes the subsystem of X with variables Xi and
Xj omitted and n is the total number of variables. Causal
density provides a useful measure of the dynamical “com-
plexity” of a system inasmuch as elements that are com-
pletely independent will have zero causal density as will el-
ements that are completely integrated in their dynamics.
Exemplifying standard intuitions about complexity �41�, high
causal density will only be achieved when elements behave
somewhat differently from each other, in order to contribute
novel potential predictive information, and at the same time
are globally integrated, so that the potential predictive infor-
mation is in fact useful �42,43�.

Using MVGC, various extensions to Eq. �50� can be sug-
gested based on the various possible interactions between
multivariate predictors, predictees, and conditional variables.
These extensions may provide a more comprehensive mea-
sure of complexity by analyzing a target system at multiple
scales. First we define the causal density from size k to size
r, cdk→r�X�, as the average MVGC from a subset of size k to
a subset of size r, conditioned on the rest of the system,

cdk→r�X� =
1

nk,r
�
i=1

nk,r

FVi
k→Ui

r�Wi
n−k−r, �51�

where X=Vi
k�Ui

r�Wi
n−k−r denotes the ith of the nk,r

�� n
k �� n−k

r � distinct tripartitions of X into disjoint subsystems
of respective sizes k, r and �n−k−r�. Then using this, one
could define the bipartition causal density �bcd� as the aver-
age of cdk→�n−k��X� over predictor size k,

bcd�X� =
1

n − 1�
k=1

n−1

cdk→�n−k��X� . �52�

Interestingly, this quantity is closely related to the popular
Tononi-Sporns-Edelman “neural complexity” measure �44�
which averages �contemporaneous� mutual information
across bipartitions �we are currently exploring this relation-
ship in work in preparation�. It could also be interesting to
compare causal density at different scales of predictor plus
predictee size; thus we define

cds�X� �
1

s − 1�
k=1

s−1

cdk→�s−k��X� . �53�

Then the original causal density measure of Eq. �50� is just
cd2 and bcd is cdn. The average of this over all scales can be
used to define a complete tripartition causal density �tcd�,

tcd�X� �
1

n − 1�
s=2

n

cds�X� . �54�

A comparison of the properties of all versions of causal den-
sity, as well as related complexity measures, is in progress.
We remark that it is straightforward to define spectral ver-
sions of these causal density measures.

VII. AUTONOMY IN COMPLEX SYSTEMS

G-causality has recently been adapted to provide an op-
erational measure of autonomy in complex systems �13�. A
variable X can be said to be “G autonomous” with respect to
a �multivariate� set of external variables Z if its own past
states help predict its future states over and above predictions
based on Z. This definition rests on the intuition of autonomy
as self-determination or self-causation. We can formalize this
notion along the lines of MVGC as follows. Consider the
regressions

Xt = A · Zt−1
�r� + �t,

Xt = A� · �Xt−1
�p�

� Zt−1
�r� � + �t�, �55�

which differ from Eqs. �7� primarily because the predictee
variable X is not regressed on itself in one of the equations.
The G-autonomy of X is then given by

AX�Z = ln� ����t��
����t���

� . �56�

The extension of G-autonomy to the multivariate case is im-
portant because it accommodates situations in which groups
of elements may be jointly autonomous �self-determining
and self-causing� even though the activity of individual ele-
ments within the group may be adequately predicted by com-
binations of activities of other elements in the group.
Univariate formulations of G-autonomy �13� would fail in
these cases. Consider as a trivial example an element X1
which is G autonomous with respect to a background Z. If X1
is now duplicated by the element X2 it will no longer appear
as G autonomous within the multivariate system X1 � X2
� Z. However, the multivariate variable X1 � X2 will be
�jointly� G autonomous with respect to Z.

As discussed in �13� G-autonomy also provides the basis
for a notion of “G-emergence” as applied to the relation be-
tween macroscopic variables “emerging” from the activity of
microscopic constituents. G-emergence operationalizes the
intuition that a macrolevel variable is emergent to the extent
that it is simultaneously autonomous from and dependent on
its microlevel constituents �13,45�. Extension of
G-emergence to the multivariate case using MVGC is
straightforward, allowing consideration of multivariate mi-
crovariables and macrovariables.

VIII. MACROSCOPIC VARIABLES AND CAUSAL
INDEPENDENCE

Given the ability to assess multivariate causal interac-
tions, a second challenge arises: the identification of relevant
groupings of variables into multivariate ensembles. One ap-
proach to this challenge adopts the perspective of statistical
mechanics on the emergence of novel macroscopic variables,
given a microscopic description of a system �46,47�. Here,
we suggest that MVGC may furnish a useful method for
macrovariable identification in this context. Let us assume
that Zt represents a set of microscopic variables defining a
complex �possibly stochastic� dynamical system and Xt
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� f�Zt� represents a set of macroscopic variables functionally
�possibly deterministically� dependent on the microscopic
variables. There is then a sense in which X represents a “par-
simonious” high-level description of the system to the extent
that it predicts its own dynamical evolution without recourse
to the low level of description of the system represented by
Z, that is, to the extent that X exhibits strong causal inde-
pendence with respect to Z. In this view, FZ→X furnishes a
natural measure of the lack of this causal independence,
which might then be used to identify parsimonious macro-
scopic variables by minimizing FZ→f�Z� over candidate func-
tions f� · �. The multivariate formulation MVGC would ap-
pear to be significant in this context for reasons similar to the
G-autonomy case. Specifically, it may be that a set of mac-
roscopic variables X may jointly have high causal indepen-
dence with respect to the microscopic variables Z, while the
component variables Xi may individually have lower causal
independence.

The notions of G-autonomy, G-emergence, and causal in-
dependence are distinct but related. In short G-autonomy
measures self-causation, causal independence measures the
absence of useful predictive information between micro-
scopic and macroscopic descriptions of a system, and
G-emergence measures a combination of macrolevel au-
tonomy and microvariable to macrovarible dependence. It is
possible and is left as an objective of future work that all
three measures could be applied usefully to systems that
avail multiple levels of descriptions �i� to identify relevant
groupings of observables at each level, �ii� to decompose
causal interactions within each level, and finally �iii� to quan-
titatively characterize interlevel relationships.

IX. DISCUSSION

We have described and motivated a measure of multivari-
ate causal interaction that is a natural extension of the stan-
dard G-causality measure. The measure, originally intro-
duced by Geweke �5� but almost totally overlooked since,
uses the generalized variance �the determinant of the residual
covariance matrix� and we have termed it multivariate
G-causality �MVGC�. It contrasts with another recent pro-
posal �4� for addressing the same problem which uses instead
the total variance �the trace of the residual covariance ma-
trix�. In this paper, we have presented several theoretical
justifications, augmented by numerical modeling, for prefer-
ring MVGC over the trace version, which we summarize
below. We have also extended MVGC to address novel chal-
lenges in the analysis of complex dynamical systems, includ-
ing quantitative characterization of causal density, autonomy,
and identification of macroscopic variables via causal inde-
pendence.

A. Importance of multivariate causal analysis

In many analyses of complex systems, particularly in neu-
roscience and biology, there may be no simple or principled
relationship between observed variables and explanatorily
relevant collections or ensembles of these variables. In Sec. I
we already remarked on fMRI, where explanatorily relevant

ROIs are each composed of multiple observables �voxels�
which are arbitrarily demarcated with respect to underlying
neural mechanisms. Other noninvasive neuroimaging meth-
ods share similar varieties of arbitrariness: both electroen-
cephalography �EEG� and magnetoencephalography �MEG�
provide signals which are complex convolutions of underly-
ing neural sources. In these and similar cases, multivariate
causal analysis, and MVGC in particular, can be used to
aggregate univariate observables into meaningful multivari-
ate �ensemble� variables. It bears emphasizing that MVGC is
fundamentally different from conditional G-causality �48�,
which assesses the causal connectivity between two univari-
ate variables conditioned on a set of other variables.

Even when it is possible to measure directly the activity
of variables of interest, it is still important to consider mul-
tivariate interactions. Continuing with the neuroscience ex-
ample, it may be that multiple ROIs act jointly to influence
other ROIs or cognitive and/or behavioral outputs. In single
cell recordings this point is even more pressing: since the
seminal work of Hebb �49� it has been increasingly appreci-
ated that neurons act as ensembles, rather than singly, in the
adaptive function of the brain �50�. MVGC is well suited to
disclosing causal relationships among these ensembles as a
window onto underlying principles of brain operation.

Of course, the application of MVGC is not limited to
neuroscience. Multivariate interactions are likely to be im-
portant in a very broad range of application areas. For ex-
ample, genetic, metabolic, and transcriptional regulatory net-
works may be usefully decomposed into multivariate
ensembles influencing other such ensembles �4�. Indeed,
multivariate interactions may be important in any system,
natural or artificial, which can be described in terms of mul-
tiple simultaneously acquired time series.

B. Generalized variance vs total variance

A different approach to multivariate causal analysis was
recently proposed by Ladroue and colleagues �4�. This in-
volved a measure �which we call trvMVGC� based on the
trace of the residual covariance matrix �the total variance�
rather than the determinant �the generalized variance�.
Geweke �5� provided the original justifications for the deter-
minant form but did not explicitly discuss the trace form. As
noted in Sec. 3 of Ref. �5�, Geweke’s motivations included
that �i� MVGC is invariant under �linear� transformations of
variables and �ii� the maximum likelihood estimator of
MVGC is asymptotically �2 distributed for large samples
�there is no standard test statistic for trvMVGC�. In this pa-
per we have substantially enhanced this list in each case
comparing MVGC explicitly with trvMVGC. In summary,
�iii� MVGC is fully equivalent to transfer entropy under
Gaussian assumptions, whereas for trvMVGC this equiva-
lence only holds for the univariate case; �iv� MVGC is in-
variant under all �nonsingular� linear transformations of the
predictee variable, while trvMVGC is invariant only under
conformal linear transformations �see below�; �v� only
MVGC is expandable as a sum of univariate G-causalities;
�vi� MVGC but not trvMVGC admits a satisfactory spectral
decomposition inasmuch as it guarantees a consistent rela-
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tionship with the corresponding time-domain formulation;
�vii� only MVGC depends on residual correlations and
through these accommodates in a natural way the influence
of exogenous or latent variables, and �viii� in the partial ver-
sion of MVGC, pMVGC is decomposable in terms of non-
partial MVGCs, but this is not true in general for trvMVGC.

All the above factors suggest that MVGC should be pre-
ferred to trvMVGC. Taken individually they may differ in
their significance but taken together they emphasize that
MVGC, but not trvMVGC, provides a comprehensive and
theoretically consistent extension of standard G-causality to
the multivariate case. While this consistency is the most im-
portant reason to prefer MVGC to trvMVGC, let us consider
further three of the individual properties. First, the equiva-
lence with transfer entropy is important because it justifies
the use of linear modeling for multivariate causal analysis at
least where Gaussian assumptions are reasonable. Second,
the broader range of invariance is important because it means
that MVGC is robust to a wider range of common inaccura-
cies during data collection, in particular those in which
univariate variables are contaminated by contributions from
other variables and in which different components of multi-
variate ensembles are differently scaled by measurement
constraints. It is likely that this additional robustness will
have significant practical importance in many experimental
applications, for example, in EEG and MEG where indi-
vidual sensors detect signals from multiple neural sources
and may differentially amplify these sources according to
their distance from the sensors and their alignment with the
cortical surface. Finally, the lack of a satisfactory spectral
version of trvMVGC, which we establish both theoretically
and numerically �Sec. IV D and Figs. 2 and 3�, implies that
frequency-domain results obtained using trvMVGC are un-
reliable both in their magnitude and in their spectral profile.

Ladroue et al. �4� noted Geweke’s form �i.e., MVGC� and
suggested that trvMVGC is preferable in view of possible
numerical instabilities attending the computation of determi-
nants for high-dimensional data. However the existence of an
expansion of MVGC in terms of univariate G-causality �18�
seems to counter this claim since the univariate causalities
would not be expected to be unstable. Numerical simulations
�Sec. IV C and Fig. 1� confirm our view.

C. Quantities derived from MVGC

In the second part of the paper we used MVGC to derive
several measures that have the potential to shed substantial
new light on complex system dynamics.

First, MVGC leads immediately to a series of redefini-
tions of our previous causal density measure �12�, which
aims to capture the complexity of a system’s dynamics in
terms of coexisting integration and differentiation. Extension
to the multivariate case allows causal density to be evaluated
at multiple levels of description thus furnishing a more com-
prehensive measure of dynamical complexity. Causal density
has been suggested as a measure of neural dynamics that
captures certain aspects of consciousness �42�. It has been
shown �51� to increase in response to perceived stimuli as
compared to nonperceived stimuli in a visual masking task

�52�, and it captures the complex dynamics of small-world
networks more effectively than does a prominent competing
measure, neural complexity �43�. Multivariate causal density
has the potential to further strengthen and generalize these
contributions.

Second, MVGC can be used to generalize the concept of
G-autonomy, which operationalizes the notion of autonomy
as self-causation �13�. Multivariate G-autonomy is a signifi-
cant enhancement because it deals with the case in which a
group of variables may be jointly autonomous even though,
individually, no variable is autonomous. Our results therefore
pave the way to informative application of this measure to
complex systems.

Third, MVGC can be helpful in considering relations be-
tween microscopic and macroscopic levels of description of
a system. One approach is to consider how causally indepen-
dent a macroscopic variable is with respect to its set of con-
stituent microvariables. We have suggested that this notion
can be used to identify parsimonious macrovariables by
maximizing causal independence over a space of functions
relating microvariables and macrovariables. Alternatively,
the concept of G-emergence operationalizes the idea that an
emergent macrovariable is both autonomous from and caus-
ally dependent on its underlying microlevel constituents. Un-
like the causal independence view, G-emergence may be bet-
ter suited to characterizing the degree of emergence as
opposed to identifying prospective macrovariables;
G-emergence also explicitly measures microvariable to mac-
rovariable dependence rather than assuming that it is present.

Finally, the concepts of redundancy and synergy among
variables have been recently introduced via the use of a vari-
ant of the trvMVGC measure �53�. These quantities aim at
detecting functionally relevant partitions of a system by
grouping variables according to their summed causal influ-
ences. Because of the advantages of MVGC over trvMVGC,
we suggest that it may be useful to redefine redundancy and
synergy in terms of MVGC.

D. Summary

Models of complex systems typically contain large num-
bers of variables. Having a measure for directed interactions
between groups of variables, as opposed to just single vari-
ables, provides a useful tool for the analysis of such systems.
We have demonstrated that MVGC is such a measure and we
have provided a series of justifications, theoretical and nu-
merical, to prefer it over a related measure, trvMVGC. Like
all measures of directed interaction based on G-causality,
MVGC can be measured for freely collected data without
perturbing or providing inputs to the system. Finally, in con-
trast to alternative approaches such as structural equation
modeling �54� or dynamic causal modeling �2�, MVGC can
be applied with very little prior knowledge of the system
under consideration.
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APPENDIX A: MINIMIZING THE DETERMINANT OF
THE RESIDUAL COVARIANCE MATRIX

We wish to show that minimizing the determinant ������,
where �=X−A ·Y as specified in Eq. �4�, leads to same value
�5� for the regression coefficients A. We thus solve for A in
the simultaneous equations,

� ������
�Ai�

= 0, �A1�

where i runs from 1, . . . ,n, � from 1, . . . ,m, and ���� is
given by

���� = ��X� − ��X,Y�AT − A��X,Y�T + A��Y�AT.

�A2�

We use the formula for an invertible square matrix B,

� �B�
�Bjk

= �B��B−1�kj . �A3�

Assuming ���� invertible and setting W�����������−1 we
have

� ������
�Ai�

= �
j,k

� ������
����� jk

����� jk

�Ai�
= �

j,k
Wkj

����� jk

�Ai�

= �
j,k

Wkj
�

�Ai�
���X� − ��X,Y�AT − A��X,Y�T + A��Y�AT� jk

= �
j,k

Wkj
�

�Ai�
�− �

	

��X,Y� j	Ak	 − �
	

��X,Y�k	Aj	 + �
	,�

��Y�	�Aj	Ak��

= �
j,k

Wkj�− �
	

��X,Y� j	�ik��	 − �
	

��X,Y�k	�ij��	 + �
	,�

��Y�	��Aj	�ik��� + Ak��ij��	��

= − �
j

Wij��X,Y� j� − �
k

Wki��X,Y�k� + �
	,j

Wij��Y�	�Aj	 + �
�,k

Wki��Y���Ak� = 2�W�A��Y� − ��X,Y���i�,

where we have used Eqs. �A2� and �A3�, after gathering terms and simplifying, and Eq. �5� follows.

APPENDIX B: PROOF OF EXPANSION OF MULTIVARIATE GRANGER CAUSALITY

Here we prove Eq. �18�. We consider the case of there being no conditional third variable since the extension to this case
is trivial. We first expand in terms of predictor variables according to

FY→X = ln� ���X�X−��
���X�X−

� Y−��� = ln� ���X�X−�� · ���X�X−
� Y1

−�� · ���X�X−
� Y1

−
� Y2

−�� ¯ ���X�X−
� Y1

−
� ¯ Ym−1

− ��
���X�X−

� Y1
−�� · ���X�X−

� Y1
−

� Y2
−�� ¯ ���X�X−

� Y1
−

� ¯ Ym
− ��

�
= ln� ���X�X−��

���X�X−
� Y1

−��
� + ln� ���X�X−

� Y1
−��

���X�X−
� Y1

−
� Y2

−��
� + ¯ + ln� ���X�X−

� Y1
−

� ¯ Ym−1
− ��

���X�X−
� Y1

−
� ¯ Ym

− ��
� = FY1→X + FY2→X�Y1

+ FY3→X�Y1�Y2
+ ¯ + FYm→X�Y1�Y2�¯�Ym−1

. �B1�

To expand in terms of predictees we use the expansion

���X�W�� = ��X1���X2�W � X1���X3�W � X1 � X2� ¯ ��Xn�W � X1 � ¯ Xn−1� , �B2�

which follows from repeated application of Eq. �3�. We obtain

FY1→X = ln� ���X�X−��
���X�X−

� Y1
−��
� = ln� ��X1�X−���X2�X−

� X1� ¯ ��Xn�X−
� X1 � X2 � ¯ � Xn−1�

��X1�X−
� Y1

−���X2�X−
� Y1

−
� X1� ¯ ��Xn�X−

� Y1
−

� X1 � X2 � ¯ � Xn−1�
�

= FY1→X1�X + FY1→X2�X�X1
0 + FY1→X3�X�X1

0
�X2

0 + ¯ + FY1→Xn�X�X1
0

�X2
0

�¯�Xn−1
0 �B3�

and similar for the other components of the sum in Eq. �B1� from which the result follows.
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APPENDIX C: PARTIAL COVARIANCE OF RESIDUALS
FOR TWO VARIABLES JOINTLY DEPENDENT

ON A THIRD

Given the regressions

X = A · W + � ,

Z = B · W + � , �C1�

where the regression coefficients A , B are derived from an
ordinary least-squares Yule-Walker or equivalent procedure,
we show that

������ = ��X�Z � W� , �C2�

assuming that all �partial� covariance matrices which appear
below are invertible. We have

���� = ��X�W� ,

���� = ��Z�W� ,

���,�� = ��X,Z�W� . �C3�

Thus we may calculate that

������ = ��X�W� − ��X,Z�W���Z�W�−1��Z,X�W� .

�C4�

Using the block matrix inversion formula for ��Z � W�, we
may also calculate that

��X�Z � W� = ��X� − ��X,Z�W���Z�W�−1��Z,X�

− ��X,W�Z���W�Z�−1��W,X� . �C5�

Now expanding the ��X �W����X�
−��X ,W���W�−1��W ,X� term in Eq. �C4�, we find using
Eq. �C5� that Eq. �C2� is equivalent to

��X,W���W�−1��W,X� + ��X,Z�W���Z�W�−1��Z,X�W�

= ��X,Z�W���Z�W�−1��Z,X�

+ ��X,W�Z���W�Z�−1��W,X� .

Rearranging and factorizing,

���X,W���W�−1 − ��X,W�Z���W�Z�−1���W,X�

= ��X,Z�W���Z�W�−1���Z,X� − ��Z,X�W�� . �C6�

Now the term in square brackets on the RHS of Eq. �C6�

simplifies to ��Z ,W���W�−1��W ,X� so that, factoring out
��W ,X�, Eq. �C6� is equivalent to

���X,W���W�− − ��X,W�Z���W�Z�−1

− ��X,Z�W���Z�W�−1��Z,W���W�−1� � ��W,X� = 0.

�C7�

We now show that the term in the square brackets in Eq.
�C7� is zero, i.e., that

��X,W���W�−1 − ��X,W�Z���W�Z�−1

− ��X,Z�W���Z�W�−1��Z,W���W�−1 = 0, �C8�

thus proving Eq. �C2�. Rearranging and factoring out
��W�−1, Eq. �C8� becomes

���X,W� − ��X,Z�W���Z�W�−1��Z,W����W�−1

= ��X,W�Z���W�Z�−1,

or, multiplying through on the right by ��W �Z�,

���X,W� − ��X,Z�W���Z�W�−1��Z,W����W�−1��W�Z�

= ��X,W�Z� .

Expanding ��W �Z�, factorizing, and rearranging again, we
get

���X,Z� − ��X,W���W�−1��W,Z����Z�−1��Z,W�

= ��X,Z�W���Z�W�−1��Z,W���W�−1��W�Z�

or, since the term in square brackets on the left-hand side is
just ��X ,Z �W�,

��X,Z�W����Z�−1��Z,W�

− ��Z�W�−1��Z,W���W�−1��W�Z�� .

We now show that, again, the term in square brackets is zero,
i.e., that

��Z�−1��Z,W� = ��Z�W�−1��Z,W���W�−1��W�Z� .

�C9�

Multiplying through on the left by ��Z �W�, Eq. �C9� is
equivalent to

��Z�W���Z�−1��Z,W� = ��Z,W���W�−1��W�Z� ,

which follows immediately on expanding ��Z �W� and
��W �Z�, thus establishing Eq. �C2�.
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